Self-Induced Large-Scale Motions in a Three-Dimensional Diffuser

Author:

Miró Arnau,Eiximeno Benet,Rodríguez Ivette,Lehmkuhl Oriol

Abstract

AbstractA direct numerical simulation of a three-dimensional diffuser at Reynolds number Re = 10,000 (based on inlet bulk velocity) has been performed using a low-dissipation finite element code. The geometry chosen for this work is the Stanford diffuser, introduced by Cherry et al. (Int. J. Heat Fluid Flow 29:803–811, 2008). Results have been exhaustively compared with the published data with a quite good agreement. Additionally, further turbulent statistics have been provided such as the Reynolds stresses or the turbulent kinetic energy. A proper orthogonal decomposition and a dynamic mode decomposition analyses of the main flow variables have been performed to identify the main characteristics of the large-scale motions. A combined, self-induced movement of the large-scales has been found to originate in the top-right expansion corner with two clear features. A low-frequency diagonal cross-stream travelling wave first reported by Malm et al. (J. Fluid Mech. 699:320–351, 2012), has been clearly identified in the spatial modes of the stream-wise velocity components and the pressure, associated with the narrow band frequency of $$St \in [0.083,0.01]$$ S t [ 0.083 , 0.01 ] . This movement is caused by the geometrical expansion of the diffuser in the cross-stream direction. A second low-frequency trait has been identified associated with the persisting secondary flows and acting as a back and forth global accelerating-decelerating motion located on the straight area of the diffuser, with associated frequencies of $$St < 0.005$$ S t < 0.005 . The smallest frequency observed in this work has been $$St = 0.0013$$ S t = 0.0013 . This low-frequency observed in the Stanford diffuser points out the need for longer simulations in order to obtain further turbulent statistics.

Funder

HiFiTurb

NextSim

Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación

Ramon y Cajal postdoctoral contract

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3