Representative Phenomena of Cyclic Turbulent Combustion in High-Pressure Fuel Sprays

Author:

Parker Allen,Agrawal Ajay,Bittle Joshua

Abstract

AbstractCyclic variations in conventional diesel combustion engines can lead to large differences in engine out emissions even at steady operation. This study uses an optically accessible constant-pressure flow chamber to acquire fuel injections in quick succession to analyze mixing, auto-ignition, and combustion of diesel-surrogate n-heptane using multiple high-speed optical diagnostics. Prior studies have utilized fewer injections and/or they rely on analysis of ensemble average behavior. These approaches do not yield information on injection-to-injection variation or provide confidence in utilizing individual injection measurements for high-fidelity computational fluid dynamics(CFD) model validation. In this study, a large set of 500 injections is used to obtain global parameters including liquid length, vapor penetration length, ignition delay time, and lift-off length. Results for multiple injections are presented to illustrate large injection to injection variations. Potential sources for these variations are analyzed to conclude localized, small scale turbulence and rate of injection variations as the likely sources. Then, a statistical method based on z-scores is proposed and implemented to identify instantaneous injections that best represent the bulk data-set of jet boundaries measured independently by three different diagnostics. This synthesis of statistics-guided screening of data set and ensemble-average analysis offers higher confidence for CFD model validation relying upon both a representative single and average injection results.

Funder

Vehicle Technologies Office

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3