Strain Rate Effects on Head-on Quenching of Laminar Premixed Methane-air flames

Author:

Luo Yujuan,Strassacker Christina,Wen Xu,Sun Zhen,Maas Ulrich,Hasse Christian

Abstract

AbstractHead-on quenching is a canonical configuration for flame-wall interaction. In the present study, the transient process of a laminar premixed flame impinging on a wall is investigated for different strain rates, while previous studies with detailed chemistry and transport focused only on unstrained conditions. Increasing strain rate leads to a reduction in the normalized quenching distance, and an increase in the normalized wall heat flux, both are considered as global flame quantities. Looking more into the local microstructure of the quenching process, CO formation and oxidation near the wall are shifted to higher temperatures under higher strain rates. Further, the local flame structure and the thermochemical state are affected by differential diffusion driven by differences in species’ gradients and diffusivities. Quenching leads to increased species’ gradients and consequently differential diffusion is amplified near the wall compared to propagating flames. However, this effect is suppressed for increasing strain rates, which is explained in more detail by a source term analysis of the transport equation for the differential diffusion parameter ZHC. Results for the global quantities and the local flame structure show that the impact of the strain rate weakens for higher wall temperatures. Finally, the analyses of the thermo-chemical quantities in the composition space shows that H2 can be a good parameter to characterize the strain rate both for propagating and quenching flamelet.

Funder

SFB/Transregio 150

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3