Study of a Premixed Turbulent Counter-Flow Flame with a Large Eddy Simulation Method

Author:

Gong Y.ORCID,Jones W. P.,Marquis A. J.

Abstract

AbstractThe turbulent counter-flow flame (TCF) has proven to be a useful benchmark to study turbulence-chemistry interactions, however, the widely observed bulk flow fluctuations and their influence on the flame stability remain unclear. In the present work, premixed TCFs are studied numerically using a Large Eddy Simulation (LES) method. A transported probability density function (pdf) approach is adopted to simulate the sub-grid scale (sgs) turbulence-chemistry interactions. A solution to the joint sgs-pdf evolution equation for each of the relative scalars is obtained by the stochastic fields method. The chemistry is represented using a simplified chemical reaction mechanism containing 15 reaction steps and 19 species. This work compares results with two meshing strategies, with the domain inside nozzles included and excluded respectively. A conditional statistical approach is applied to filter out the large scale motions of the flame. With the use of digital turbulence, the velocity field in the flame region is well reproduced. The processes of local extinction and re-ignition are successfully captured and analysed together with the strain rate field, and local extinctions are found correlated to the turbulent structures in the reactant stream. The predicted probability of localised extinction is in good agreement with the measurements, and the influence of flame stoichiometry are also successfully reproduced. Overall, the current results serve to demonstrate the capability of the LES-pdf method in the study of the premixed opposed jet turbulent flames.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3