Models of overpressure build-up in shallow sediments by glacial deposition and glacial loading with respect to chimney formation

Author:

Wangen Magnus

Abstract

AbstractChimneys and pipe structures have been observed in the caprock above the Utsira Aquifer in the North Sea. The caprock is of Pleistocene age and the chimneys appear to have been formed by natural hydraulic fracturing towards the end of the last glaciation. We study six different models for the pressure build-up in the Utsira Aquifer with respect to chimney formation. The first two models produce overpressure by a rapid deposition of glacial sediments. Using these two models, we show that the caprock permeability must be as low as 100 nD for sufficiently strong overpressure to develop. This value seems to be one order of magnitude lower than the measured permeabilities of the caprock. The four remaining models produce overpressure by a glacial loading of the caprock and the aquifer. This study shows that a 1-D model of a caprock with soil properties cannot produce conditions for chimney formation unless the least horizontal compressive stress is much less than the overburden. Furthermore, a 1-D poroelastic model of glacial loading of an aquifer and a caprock cannot produce conditions for chimney formation based on available geomechanical data. However, we demonstrate that a 2-D poroelastic model can produce conditions for chimney formation with glacial loads that partially cover the surface.

Funder

Norges Forskningsråd

Institute for Energy Technology

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3