Modeling of groundwater quality index by using artificial intelligence algorithms in northern Khartoum State, Sudan

Author:

Mohammed Musaab A. A.ORCID,Khleel Nasraldeen A. A.,Szabó Norbert P.,Szűcs Péter

Abstract

AbstractIn the present study, multilayer perceptron (MLP) neural network and support vector regression (SVR) models were developed to assess the suitability of groundwater for drinking purposes in the northern Khartoum area, Sudan. The groundwater quality was evaluated by predicting the groundwater quality index (GWQI). GWQI is a statistical model that uses sub-indices and accumulation functions to reduce the dimensionality of groundwater quality data. In the first stage, GWQI was calculated using 11 physiochemical parameters collected from 20 groundwater wells. These parameters include pH, EC, TDS, TH, Cl, SO4−2, NO3, Ca+2, Mg+2, Na+, and HCO3. The primary investigation confirmed that all parameters except for EC and NO3 are beyond the standard limits of the World Health Organization (WHO). The measured GWQI ranged from 21 to 396. As a result, groundwater samples were classified into three classes. The majority of the samples, roughly 75%, projected into the excellent water category; 20% were considered good water and 5% were classified as unsuitable. GWQI models are powerful tools in groundwater quality assessment; however, the computation is lengthy, time-consuming, and often associated with calculation errors. To overcome these limitations, this study applied artificial intelligence (AI) techniques to develop a reliable model for the prediction of GWQI by employing MLP neural network and SVR models. In this stage, the input data were the detected physiochemical parameters, and the output was the computed GWQI. The dataset was divided into two groups with a ratio of 80% to 20% for models training and validation. The predicted (AI) and actual (calculated GWQI) models were compared using four statistical criteria, namely, mean square error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). Based on the obtained values of the performance measures, the results revealed the robustness and efficiency of MLP and SVR models in modeling GWQI. Consequently, groundwater quality in the north Khartoum area is evaluated as suitable for human consumption except for BH 18, where highly mineralized water is observed. The developed approach is advantageous in groundwater quality evaluation and is recommended to be incorporated in groundwater quality modeling.

Funder

University of Miskolc

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3