Modeling the biogeochemistry of sulfur in beech (Fagus sylvatica L.) stands of the Vienna Woods

Author:

Dolschak Klaus,Berger Torsten W.ORCID

Abstract

AbstractIn this article, we describe the setup and the application of a novel Sulfur Dynamics Model (SDM), with the aim to identify and quantify processes, which are crucial for the understanding of the biogeochemical sulfur (S) cycle of forest ecosystems. The simulator takes into account abiotic processes as well as biotic interactions between atmosphere, plant and soil. We applied the model to two Austrian beech stands where deposition of S and soil solution chemistry were monitored intensively over a two-year period. Under consideration of high historic loads and the more recent recession of atmospheric S deposition, we found a suitable model configuration where it was possible to assign both intra-annual fluctuations of the SO4-S in soil solution and long-time trends in the stream discharge to specific S transformation processes. We identified the interplay of microbial immobilization (the microbial conversion of solute sulfate to organic soil S) and mineralization as key driver of short-term fluctuations in the soil solution. In the long term, the delayed release of historically accumulated S is driven mainly by the slow mineralization of S rich plant biomass, recalcitrant to decomposition. Adsorption and desorption processes seem to play only a negligible role on our investigated stands. We conclude that our proposed model which is based on the current understanding of S biogeochemistry is sufficient to describe S dynamics on the investigated forest stands. The code file (SAS) for all model functions will be provided by the authors after request.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3