Wettability alteration process at pore-scale during engineered waterflooding using computational fluid dynamics

Author:

Chen YongqiangORCID,Chang Ping,Xu Guang,Xie Quan

Abstract

AbstractEngineered waterflooding modifies chemistry of injected brine to efficiently and environmentally friendly enhance oil recovery. The common practice of engineered waterflooding includes low salinity waterflooding (LSW) and carbonated waterflooding. Among these oil recovery methods, wettability alteration has been perceived as a critical physicochemical process for additional oil recovery. While extensive work has been conducted to characterize the wettability alteration, the existing theory cannot explain the conflict oil recovery between secondary mode (injecting engineered water at the very beginning of flooding) and tertiary mode (injecting engineered water after conventional waterflooding), where secondary engineered waterflooding always gives a greater incremental oil recovery than tertiary mode. To explain this recovery difference, a preferential flow channel was hypothesized to be created by secondary flooding, which likely reduces sweep efficiency of tertiary flooding. To test this hypothesis, computational fluid dynamic simulations were performed with finite volume method coupled with dynamic contact angles in OpenFOAM to represent wettability characteristics (from strongly oil-wet to strongly water-wet) at pore scale to quantify the role of pre-existing flow channel in the oil recovery at different flooding modes. The simulation results showed that secondary engineered waterflooding indeed generates a preferential flow pathway, which reduces recovery efficiency of subsequent tertiary waterflooding. Streamline analysis confirms that tertiary engineered waterflooding transports faster than secondary engineered waterflooding, implying that sweep efficiency of tertiary engineered waterflooding is lower than secondary engineered waterflooding. This work provides insights for a greater oil recovery at secondary mode than tertiary mode during engineered waterflooding at pore scale.

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3