Abstract
AbstractHoneybees are important plant pollinators. Unfortunately, there is a growing increase in the loss of honeybee colonies, and this is having a serious economic impact on crop farmers. A major cause of these losses is the parasitic mite Varroadestructor, which is a vector of deformed wing virus (DWV). Some bee species have resistant mechanisms, such as grooming and hygienic behaviours, against Varroa mites. A clear understanding of the effects of these control behaviours on the mites and the viruses they transmit can be important in reducing colony losses. Here, a stochastic model is formulated and analysed to consider the extent to which these control behaviours reduce the probability of an outbreak of DWV in honeybee colonies. Vector and bee-to-bee transmission routes are considered. Using branching process theory, it is shown that without any hygienic or grooming behaviour, a large probability of a DWV outbreak is possible. Also, if bees apply grooming or hygienic behaviour, this can reduce the probability of a virus outbreak, especially in the case of vector transmission, where it can be reduced to zero. Hygienic behaviour is the most significant factor in reducing a DWV outbreak. Thus, bee selection for hygienic behaviour may be important to reduce honeybee colony losses caused by DWV.
Funder
National Research Foundation of South Africa
Durban University of Technology
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献