Performance assessment of CORDEX regional climate models in wind speed simulations over Zambia

Author:

Libanda BrigadierORCID

Abstract

AbstractThere is no single solution to cutting emissions, however, renewable energy projects that are backed by rigorous ex-ante assessments play an important role in these efforts. An inspection of literature reveals critical knowledge gaps in the understanding of future wind speed variability across Zambia, thus leading to major uncertainties in the understanding of renewable wind energy potential over the country. Several model performance metrics, both statistical and graphical were used in this study to examine the performance of CORDEX Africa Regional Climate Models (RCMs) in simulating wind speed across Zambia. Results indicate that wind speed is increasing at the rate of 0.006 m s− 1 per year. RCA4-GFDL-ESM2M, RCA4-HadGEM2-ES, RCA4-IPSL-CM5A-MR, and RCA4-CSIRO-MK3.6.0 were found to correctly simulate wind speed increase with varying magnitudes on the Sen’s estimator of slope. All the models sufficiently reproduce the annual cycle of wind speed with a steady increase being observed from April reaching its peak around August/September and beginning to drop in October. Apart from RegCM4-MPI-ESM and RegCM4-HadGEM2, the performance of RCMs in simulating spatial wind speed patterns is generally good although they overestimate it by ~ 1 m s− 1 in the western and southern provinces of the country. Model performance metrics indicate that with a correlation coefficient of 0.5, a root mean square error of 0.4 m s− 1, an RSR value of 7.7 and a bias of 19.9%, RCA4-GFDL-ESM2M outperforms all other models followed by RCA4-HadGEM2, and RCA4-CM5A-MR respectively. These results, therefore, suggest that studies that use an ensemble of RCA4-GFDL-ESM2M, RCA4-HadGEM2, and RCA4-CM5A-MR would yield useful results for informing future renewable wind energy potential in Zambia.

Funder

Alexander von Humboldt-Stiftung

Julius-Maximilians-Universität Würzburg

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3