Economical microscale predictions of wind over complex terrain from mesoscale simulations using machine learning

Author:

Milla-Val Jaime,Montañés Carlos,Fueyo NorbertoORCID

Abstract

AbstractThe ability to assess detailed wind patterns in real time is increasingly important for a variety of applications, including wind energy generation, urban comfort and environmental health, and drone maneuvering in complex environments. Machine Learning techniques are helping to develop accurate and reliable models for predicting local wind patterns. In this paper, we present a method for obtaining wind predictions with a higher resolution, similar to those from computational fluid dynamics (CFD), from coarser, and therefore less expensive, mesoscale predictions of wind in real weather conditions. This is achieved using supervised learning techniques. Four supervised learning approaches are tested: linear regression (SGD), support vector machine (SVM), k-nearest neighbors (KNn) and random forest (RFR). Among the four tested approaches, SVM slightly outperforms the others, with a mean absolute error of 1.81 m/s for wind speed and 40.6$$^{\circ }$$ for wind direction. KNn however achieves the best results in predicting wind direction. Speedup factors of about 290 are achieved by the model with respect to using CFD.

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3