MRP4 over-expression has a role on both reducing nitric oxide-dependent antiplatelet effect and enhancing ADP induced platelet activation

Author:

Guarino Maria Luisa,Massimi Isabella,Alemanno Laura,Conti Laura,Angiolillo Dominick J.,Pulcinelli Fabio M.ORCID

Abstract

AbstractThe impact of inhibition of multidrug resistance protein 4 (MRP4) on nitric oxide (NO) resistance and on ADP-induced platelet aggregation is unknown. The aim of this investigation was to verify whether platelet NO resistance correlates with MRP4 expression and evaluate whether this can be reduced by in vitro MRP4 inhibition mediated by cilostazol. Moreover, we assessed if inhibition of MRP4-mediated transport reduces ADP-induced platelet reactivity. The inhibitory effect of sodium nitroprusside (SNP), a NO-donor that enhances cyclic guanosine monophosphate (cGMP) cytosolic concentration, was assessed in platelets obtained from aspirin treated patients and in a control population. The inhibitory effect of SNP was evaluated by ADP-induced aggregation in SNP-treated platelets. The impact of MRP4 on ADP-induced platelet aggregation was performed in high on aspirin residual platelet reactivity (HARPR) patients and compared to healthy volunteers (HV), and a control cohort (CTR). In aspirin-treated patients with high levels of MRP4, reduced SNP inhibition was found compared to those with low levels of MRP4. MRP4 inhibition by cilostazol significantly reduced ADP-induced platelet aggregation in HARPR population, and to a lesser extent in HV and CTR populations. In conclusion, cilostazol can mitigate the hyper-reactive platelet phenotype of HARPR patients by reducing residual ADP-induced platelet aggregation and increasing NO-dependent endothelial antiplatelet effects.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3