An improved ensemble approach for effective intrusion detection
Author:
Publisher
Springer Science and Business Media LLC
Subject
Hardware and Architecture,Information Systems,Theoretical Computer Science,Software
Link
http://link.springer.com/content/pdf/10.1007/s11227-019-03035-w.pdf
Reference52 articles.
1. Ahmadian K, Golestani A, Analoui M, Jahed M (2007) Evolving ensemble of classifiers in low-dimensional spaces using multi-objective evolutionary approach. In: Proceedings of 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS). IEEE, pp 217–222
2. Ahmadian K, Golestani A, Mozayani N, Kabiri P (2007) A new multi-objective evolutionary approach for creating ensemble of classifiers. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics (ISIC). IEEE, pp 1031–1036
3. Breiman L (1996) Bias, variance, and arcing classifiers (technical report 460). Department of Statistics, University of California at Berkeley
4. Brown C, Cowperthwaite A, Hijazi A, Somayaji A (2009) Analysis of the 1999 Darpa/Lincoln Laboratory IDS evaluation data with NetADHICT. In: Proceedings of IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA). IEEE, pp 1–7
5. Chebrolu S, Abraham A, Thomas J (2005) Feature deduction and ensemble design of intrusion detection systems. Comput Secur 24(4):295–307
Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ALRN-RCS: Advanced Approach to Network Intrusion Detection Using Attention Long-Term Recurrent Networks and Chaotic Optimization;IETE Journal of Research;2024-07-22
2. Voting Ensemble: Performance Improvement for Intrusion Detection System;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03
3. Feature Extraction and Anomaly Detection Using Different Autoencoders for Modeling Intrusion Detection Systems;Arabian Journal for Science and Engineering;2024-04-17
4. Quantum particle Swarm optimized extreme learning machine for intrusion detection;The Journal of Supercomputing;2024-03-21
5. Enhanced Intrusion Detection in In-Vehicle Networks Using Advanced Feature Fusion and Stacking-Enriched Learning;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3