Numerical Analysis of Thorax Injury Caused by the Blunt Impact of SIR-X Sponge Grenade

Author:

Chen Chaoming,Zhao Fadong,Ma Zongmin

Abstract

AbstractTo effectively assess the injury risk of the blunt impact of the SIR-X sponge grenade on the human thorax, in this paper, we used a numerical simulation technique to test the non-lethal kinetic energy projectiles that blunt impact on the Hybrid III 50th dummy model. By simulating the effect of the L5 projectile on the thorax of the Hybrid III 50th dummy model, about NATO standard AEP-99 (2021 edition), the thoracic displacement curves of the dummy model in three testing conditions were obtained in the validation corridors. The idea of replacing the finite element model of the human body with the Hybrid III 50th dummy finite element model was proposed. We considered the difficulty in obtaining data due to the large deformation of the contact position when the SIR-X sponge grenade impacts the dummy’s thorax. We proposed a mathematical model to predict the impact injury of the human thorax using the rib displacement measured by the rib displacement sensor of the Hybrid III 50th dummy. We simulated the SIR-X sponge grenade blunt impacting the dummy model’s thorax. The measured rib displacement was used to predict and analyze the injury risk of the human thorax, providing a specific data reference for practical application.

Funder

Science Foundation for Innovative Research Team of Engineering University of PAP

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3