Second Order Two-Species Systems with Nonlocal Interactions: Existence and Large Damping Limits

Author:

Di Francesco MarcoORCID,Fagioli Simone,Iorio Valeria

Abstract

AbstractWe study the mathematical theory of second order systems with two species, arising in the dynamics of interacting particles subject to linear damping, to nonlocal forces and to external ones, and resulting into a nonlocal version of the compressible Euler system with linear damping. Our results are limited to the 1 space dimensional case but allow for initial data taken in a Wasserstein space of probability measures. We first consider the case of smooth nonlocal interaction potentials, not subject to any symmetry condition, and prove existence and uniqueness. The concept of solutions relies on a stickiness condition in case of collisions, in the spirit of previous works in the literature. The result uses concepts from classical Hilbert space theory of gradient flows (cf. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, 1973) and a trick used in Brenier et al. (J. Math. Pures Appl. 99(5):577–617, 2013). We then consider a large-time and large-damping scaled version of our system and prove convergence to solutions to the corresponding first order system. Finally, we consider the case of Newtonian potentials - subject to symmetry of the cross-interaction potentials - and external convex potentials. After showing existence in the sticky particles framework in the spirit of Brenier et al. (J. Math. Pures Appl. 99(5):577–617, 2013), we prove convergence for large times towards Dirac delta solutions for the two densities. All the results share a common technical framework in that solutions are considered in a Lagrangian framework, which allows to estimate the behavior of solutions via $L^{2}$ L 2 estimates of the pseudo-inverse variables corresponding to the two densities. In particular, due to this technique, the large-damping result holds under a rather weak condition on the initial data, which does not require well-prepared initial velocities. We complement the results with numerical simulations.

Funder

Università degli Studi dell’Aquila

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3