Abstract
AbstractCohort studies of brain stimulations performed with stereo-electroencephalographic (SEEG) electrodes in epileptic patients allow to derive large scale functional connectivity. It is known, however, that brain responses to electrical or magnetic stimulation techniques are not always reproducible. Here, we study variability of responses to single pulse SEEG electrical stimulation. We introduce a second-order probability analysis, i.e. we extend estimation of connection probabilities, defined as the proportion of responses trespassing a statistical threshold (determined in terms of Z-score with respect to spontaneous neuronal activity before stimulation) over all responses and derived from a number of individual measurements, to an analysis of pairs of measurements.Data from 445 patients were processed. We found that variability between two equivalent measurements is substantial in particular conditions. For long ( > ~ 90 mm) distances between stimulating and recording sites, and threshold value Z = 3, correlation between measurements drops almost to zero. In general, it remains below 0.5 when the threshold is smaller than Z = 4 or the stimulating current intensity is 1 mA. It grows with an increase of either of these factors. Variability is independent of interictal spiking rates in the stimulating and recording sites.We conclude that responses to SEEG stimulation in the human brain are variable, i.e. in a subject at rest, two stimulation trains performed at the same electrode contacts and with the same protocol can give discrepant results. Our findings highlight an advantage of probabilistic interpretation of such results even in the context of a single individual.
Funder
Seventh Framework Programme
Horizon 2020 Framework Programme
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Subject
Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献