Deficient Novelty Detection and Encoding in Early Alzheimer’s Disease: An ERP Study

Author:

Tautvydaitė Domilė,Adam-Darqué Alexandra,Andryszak Paulina,Poitrine Léa,Ptak Radek,Frisoni Giovanni B.,Schnider Armin

Abstract

AbstractPatients with early Alzheimer’s disease (AD) have difficulty in learning new information and in detecting novel stimuli. The underlying physiological mechanisms are not well known. We investigated the electrophysiological correlates of the early (< 400 ms), automatic phase of novelty detection and encoding in AD. We used high-density EEG Queryin patients with early AD and healthy age-matched controls who performed a continuous recognition task (CRT) involving new stimuli (New), thought to provoke novelty detection and encoding, which were then repeated up to 4 consecutive times to produce over-familiarity with the stimuli. Stimuli then reappeared after 9–15 intervening items (N-back) to be re-encoded. AD patients had substantial difficulty in detecting novel stimuli and recognizing repeated ones. Main evoked potential differences between repeated and new stimuli emerged at 180–260 ms: neural source estimations in controls revealed more extended MTL activation for N-back stimuli and anterior temporal lobe activations for New stimuli compared to highly familiar repetitions. In contrast, AD patients exhibited no activation differences between the three stimulus types. In direct comparison, healthy subjects had significantly stronger MTL activation in response to New and N-back stimuli than AD patients. These results point to abnormally weak early MTL activity as a correlate of deficient novelty detection and encoding in early AD.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Horizon 2020

Innovative Medicines Initiatives

University of Geneva

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3