Differing Time Courses of Reward-Related Attentional Processing: An EEG Source-Space Analysis

Author:

Lockhofen Denise E. L.ORCID,Hübner Nils,Hemdan Fatma,Sammer Gebhard,Henare Dion,Schubö Anna,Mulert Christoph

Abstract

AbstractSince our environment typically contains more information than can be processed at any one time due to the limited capacity of our visual system, we are bound to differentiate between relevant and irrelevant information. This process, termed attentional selection, is usually categorized into bottom-up and top-down processes. However, recent research suggests reward might also be an important factor in guiding attention. Monetary reward can bias attentional selection in favor of task-relevant targets and reduce the efficiency of visual search when a reward-associated, but task-irrelevant distractor is present. This study is the first to investigate reward-related target and distractor processing in an additional singleton task using neurophysiological measures and source space analysis. Based on previous studies, we hypothesized that source space analysis would find enhanced neural activity in regions of the value-based attention network, such as the visual cortex and the anterior cingulate. Additionally, we went further and explored the time courses of the underlying attentional mechanisms. Our neurophysiological results showed that rewarding distractors led to a stronger attentional capture. In line with this, we found that reward-associated distractors (compared with reward-associated targets) enhanced activation in frontal regions, indicating the involvement of top-down control processes. As hypothesized, source space analysis demonstrated that reward-related targets and reward-related distractors elicited activation in regions of the value-based attention network. However, these activations showed time-dependent differences, indicating that the neural mechanisms underlying reward biasing might be different for task-relevant and task-irrelevant stimuli.

Funder

Deutsche Forschungsgemeinschaft

Universitätsklinikum Gießen und Marburg GmbH

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3