Abstract
AbstractCoronavirus disease 2019 (COVID-19) is the pandemic of the new millennium. COVID-19 can cause both pulmonary and systemic inflammation, potentially determining multi-organ dysfunction. Data on the relationship between COVID-19 and thyroid have been emerging, and rapidly increasing since March 2020. The thyroid gland and the virus infection with its associated inflammatory-immune responses are known to be engaged in complex interplay. SARS-CoV-2 uses ACE2 combined with the transmembrane protease serine 2 (TMPRSS2) as the key molecular complex to infect the host cells. Interestingly, ACE2 and TMPRSS2 expression levels are high in the thyroid gland and more than in the lungs. Our literature search provided greater evidence that the thyroid gland and the entire hypothalamic–pituitary–thyroid (HPT) axis could be relevant targets of damage by SARS-CoV-2. Specifically, COVID-19-related thyroid disorders include thyrotoxicosis, hypothyroidism, as well as nonthyroidal illness syndrome. Moreover, we noticed that treatment plans for thyroid cancer are considerably changing in the direction of more teleconsultations and less diagnostic and therapeutical procedures. The current review includes findings that could be changed soon by new results on the topic, considering the rapidity of worldwide research on COVID-19.
Publisher
Springer Science and Business Media LLC
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Reference87 articles.
1. World Health Organization. Coronavirus disease (COVID-19) outbreak. https://www.who.int. Accessed 3 Sept 2020.
2. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33. https://doi.org/10.1056/NEJMoa2001017.
3. World Health Organization (WHO). Coronavirus disease 2019 (COVID–19): Situation report, 209. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/. Accessed 23 August 2020.
4. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-80.e8. https://doi.org/10.1016/j.cell.2020.02.052.
5. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016-35.e19. https://doi.org/10.1016/j.cell.2020.04.035.
Cited by
183 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献