Quotient-space boundary element methods for scattering at complex screens

Author:

Claeys Xavier,Giacomel Lorenzo,Hiptmair RalfORCID,Urzúa-Torres Carolina

Abstract

AbstractA complex screen is an arrangement of panels that may not be even locally orientable because of junction lines. A comprehensive trace space framework for first-kind variational boundary integral equations on complex screens has been established in Claeys and Hiptmair (Integr Equ Oper Theory 77:167–197, 2013. https://doi.org/10.1007/s00020-013-2085-x) for the Helmholtz equation, and in Claeys and Hiptmair (Integr Equ Oper Theory 84:33–68, 2016. https://doi.org/10.1007/s00020-015-2242-5) for Maxwell’s equations in frequency domain. The gist is a quotient space perspective that allows to make sense of jumps of traces as factor spaces of multi-trace spaces modulo single-trace spaces without relying on orientation. This paves the way for formulating first-kind boundary integral equations in weak form posed on energy trace spaces. In this article we extend that idea to the Galerkin boundary element (BE) discretization of first-kind boundary integral equations. Instead of trying to approximate jumps directly, the new quotient space boundary element method employs a Galerkin BE approach in multi-trace boundary element spaces. This spawns discrete boundary integral equations with large null spaces comprised of single-trace functions. Yet, since the right-hand-sides of the linear systems of equations are consistent, Krylov subspace iterative solvers like GMRES are not affected by the presence of a kernel and still converge to a solution. This is strikingly confirmed by numerical tests.

Funder

ETH Zurich

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computer Networks and Communications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Block diagonal Calderón preconditioning for scattering at multi-screens;BIT Numerical Mathematics;2024-09-03

2. A Hausdorff-measure boundary element method for acoustic scattering by fractal screens;Numerische Mathematik;2024-02-26

3. Multi-Screen Boundary Element Methods for the Time Domain Electric Field Integral Equation;2023 International Conference on Electromagnetics in Advanced Applications (ICEAA);2023-10-09

4. Fractured meshes;Finite Elements in Analysis and Design;2023-08

5. Multi-Trace Multi-Screen Methods for Mixed Transmission/Scattering Problems;2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI);2023-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3