Accurate discretization of poroelasticity without Darcy stability

Author:

Mardal Kent-Andre,Rognes Marie E.,Thompson Travis B.ORCID

Abstract

AbstractIn this manuscript we focus on the question: what is the correct notion of Stokes–Biot stability? Stokes–Biot stable discretizations have been introduced, independently by several authors, as a means of discretizing Biot’s equations of poroelasticity; such schemes retain their stability and convergence properties, with respect to appropriately defined norms, in the context of a vanishing storage coefficient and a vanishing hydraulic conductivity. The basic premise of a Stokes–Biot stable discretization is: one part Stokes stability and one part mixed Darcy stability. In this manuscript we remark on the observation that the latter condition can be generalized to a wider class of discrete spaces. In particular: a parameter-uniform inf-sup condition for a mixed Darcy sub-problem is not strictly necessary to retain the practical advantages currently enjoyed by the class of Stokes–Biot stable Euler–Galerkin discretization schemes.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computer Networks and Communications,Software

Reference35 articles.

1. Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: The FEniCS Project Version 1.5. Archive of Num. Soft. 3 (2015)

2. Bærland, T., Kuchta, M., Mardal, K.A., Thompson, T.: An observation on the uniform preconditioners for the mixed Darcy problem. Numer. Methods Partial Differ. Equ. 36(6), 1718–1734 (2020). https://doi.org/10.1002/num.22500

3. Bergh, J., Löfström, J.: Interpolation Spaces: A Series of Comprehensive Studies in Mathematics. Springer, New York (1976)

4. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, 1st edn. Springer, Berlin (2013)

5. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2002)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alzheimer’s disease and the mathematical mind;Brain Multiphysics;2024-06

2. Numerical Solution of the Biot/Elasticity Interface Problem Using Virtual Element Methods;Journal of Scientific Computing;2024-01-25

3. Mathematical effects of linear visco-elasticity in quasi-static Biot models;Journal of Mathematical Analysis and Applications;2023-11

4. Multiphysics modelling in PyLith: poroelasticity;Geophysical Journal International;2023-09-18

5. Robust Approximation of Generalized Biot-Brinkman Problems;Journal of Scientific Computing;2022-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3