A semidiscrete Galerkin scheme for a coupled two-scale elliptic–parabolic system: well-posedness and convergence approximation rates
-
Published:2020-03-05
Issue:4
Volume:60
Page:999-1031
-
ISSN:0006-3835
-
Container-title:BIT Numerical Mathematics
-
language:en
-
Short-container-title:Bit Numer Math
Author:
Lind MartinORCID, Muntean AdrianORCID, Richardson OmarORCID
Abstract
AbstractIn this paper, we study the numerical approximation of a coupled system of elliptic–parabolic equations posed on two separated spatial scales. The model equations describe the interplay between macroscopic and microscopic pressures in an unsaturated heterogeneous medium with distributed microstructures as they often arise in modeling reactive flow in cementitious-based materials. Besides ensuring the well-posedness of our two-scale model, we design two-scale convergent numerical approximations and prove a priori error estimates for the semidiscrete case. We complement our analysis with simulation results illustrating the expected behaviour of the system.
Funder
Karlstad University
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computer Networks and Communications,Software
Reference24 articles.
1. Adams, R.A., Fournier, J.: Sobolev Spaces, vol. 140. Academic Press, Berlin (2003) 2. Alzetta, G., Arndt, D., Bangerth, W., Boddu, V., Brands, B., Davydov, D., Gassmoeller, R., Heister, T., Heltai, L., Kormann, K., Kronbichler, M., Maier, M., Pelteret, J.P., Turcksin, B., Wells, D.: The deal.II library, version 9.0. J. Numer. Math. 26(4), 173–183 (2018). https://doi.org/10.1515/jnma-2018-0054 3. Aubin, J.: Un théorème de compacité. CR Acad. Sci. Paris 256(24), 5042–5044 (1963) 4. Chalupecký, V., Muntean, A.: Semi-discrete finite difference multiscale scheme for a concrete corrosion model: a priori estimates and convergence. Jpn. J. Ind. Appl. Math. 29(2), 289–316 (2012) 5. Chechkin, G., Piatnitski, A.: Homogenization of boundary-value problem in a locally periodic perforated domain. Appl. Anal. 71(1–4), 215–235 (1998)
|
|