Abstract
AbstractWe derive optimal and asymptotically exact a posteriori error estimates for the approximation of the eigenfunction of the Laplace eigenvalue problem. To do so, we combine two results from the literature. First, we use the hypercircle techniques developed for mixed eigenvalue approximations with Raviart-Thomas finite elements. In addition, we use the post-processings introduced for the eigenvalue and eigenfunction based on mixed approximations with the Brezzi-Douglas-Marini finite element. To combine these approaches, we define a novel additional local post-processing for the fluxes that appropriately modifies the divergence without compromising the approximation properties. Consequently, the new flux can be used to derive optimal and asymptotically exact upper bounds for the eigenfunction, and optimal upper bounds for the corresponding eigenvalue. Numerical examples validate the theory and motivate the use of an adaptive mesh refinement.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computer Networks and Communications,Software