1. A. Atieg and G. A. Watson, A class of methods for fitting a curve or surface to data by minimizing the sum of squares of orthogonal distances, J. Comput. Appl. Math., 158 (2003), pp. 277–296.
2. A. Atieg and G. A. Watson, Use oflpnorms in fitting curves and surfaces to data, Aust. N. Z. Ind. Appl. Math. J., 45 (E) (2004), pp. C187–C200.
3. S. J. Ahn, W. Rauh, and H.-J. Warnecke, Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola, Pattern Recognition, 34 (2001), pp. 2283–2303.
4. S. J. Ahn, E. Westkämper, and W. Rauh, Orthogonal distance fitting of parametric curves and surfaces, in J. Levesley, I. J. Anderson, and J. C. Mason (eds.), Algorithms for Approximation IV, University of Huddersfield, 2002, pp. 122–129.
5. M. Berman, Estimating the parameters of a circle when angular differences are known, Appl. Stat., 32 (1983), pp. 1–6.