Abstract
AbstractWe propose AAA rational approximation as a method for interpolating or approximating smooth functions from equispaced samples. Although it is always better to approximate from large numbers of samples if they are available, whether equispaced or not, this method often performs impressively even when the sampling grid is coarse. In most cases it gives more accurate approximations than other methods. We support this claim with a review and discussion of nine classes of existing methods in the light of general properties of approximation theory as well as the “impossibility theorem” for equispaced approximation. We make careful use of numerical experiments, which are summarized in a sequence of nine figures. Among our new contributions is the observation, summarized in Fig. 7, that methods such as polynomial least-squares and Fourier extension may be either exponentially accurate and exponentially unstable, or less accurate and stable, depending on implementation.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computer Networks and Communications,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献