Monte Carlo integration of $$C^r$$ functions with adaptive variance reduction: an asymptotic analysis

Author:

Plaskota LeszekORCID,Przybyłowicz PawełORCID,Stȩpień ŁukaszORCID

Abstract

AbstractThe theme of the present paper is numerical integration of $$C^r$$ C r functions using randomized methods. We consider variance reduction methods that consist in two steps. First the initial interval is partitioned into subintervals and the integrand is approximated by a piecewise polynomial interpolant that is based on the obtained partition. Then a randomized approximation is applied on the difference of the integrand and its interpolant. The final approximation of the integral is the sum of both. The optimal convergence rate is already achieved by uniform (nonadaptive) partition plus the crude Monte Carlo; however, special adaptive techniques can substantially lower the asymptotic factor depending on the integrand. The improvement can be huge in comparison to the nonadaptive method, especially for functions with rapidly varying rth derivatives, which has serious implications for practical computations. In addition, the proposed adaptive methods are easily implementable and can be well used for automatic integration.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computer Networks and Communications,Software

Reference14 articles.

1. Davis, P., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)

2. Goćwin, M.: On optimal adaptive quadratures for automatic integration. BIT Numer. Math. 61, 411–439 (2021)

3. Gonnet, P.: A review of error estimation in adaptive quadrature. ACM Comput. Surv. 44, 1–36 (2012)

4. Heinrich, S.: Random approximation in numerical analysis. In: Bierstedt, K.D., et al. (eds.) Proceedings of the Functional Analysis Conference, Essen 1991, pp. 123–171. Marcel Dekker, New York (1993)

5. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3