Cognitive Reserve proxies can modulate motor and non-motor basal ganglia circuits in early Parkinson’s Disease
-
Published:2023-11-23
Issue:
Volume:
Page:
-
ISSN:1931-7557
-
Container-title:Brain Imaging and Behavior
-
language:en
-
Short-container-title:Brain Imaging and Behavior
Author:
Di Tella SoniaORCID, Isernia SaraORCID, Cabinio Monia, Rossetto Federica, Borgnis Francesca, Pagliari Chiara, Cazzoli Marta, Navarro Jorge, Silveri Maria Caterina, Baglio Francesca
Abstract
AbstractParkinson’s Disease (PD) is hallmarked by dysfunctional circuitry between the basal ganglia and dorsolateral-prefrontal cortex. Recently progress has been made in understanding factors contributing to differential susceptibility to pathology mitigating disease-related cognitive decline. Cognitive reserve, the brain processing resources accumulated throughout life while engaged in mentally stimulating activities, can play an important protective role in cognitive performance. We tested the hypothesis that Cognitive Reserve proxies may exert an impact on the basal ganglia and dorsolateral-prefrontal atrophy in early PD. Forty-five early patients with PD and 20 age-gender-matched healthy controls (HC) completed the Cognitive Reserve Index questionnaire to quantify Cognitive Reserve proxies by three indexes (CRI-Education, CRI-Working Activity, CRI-Leisure Time) and a structural MRI examination (3T). Morphometrical indexes for basal ganglia (bilateral putamen, caudate, pallidum volume) and dorsolateral-prefrontal cortex (cortical thickness) were computed. Significant differences between HC and PD were tested by direct comparisons in demographics, cognitive level, and cognitive reserve proxies indexes. Then two multiple regression analyses were performed to identify predictors of the basal ganglia and dorsolateral-prefrontal cortex structural integrity. Regression analysis revealed that basal ganglia volume was significantly predicted by CRI-Education (pFDR = 0.029), sex (pFDR = 0.029), and Total Intracranial Volume (pFDR < 0.001). Instead, the dorsolateral-prefrontal thickness was predicted by CRI-Leisure Time (pFDR = 0.030) and age (pFDR = 0.010). Cognitive Reserve proxies, especially education and leisure-time activities, can play a protective role on the structural integrity of the basal ganglia and dorsolateral-prefrontal cortex, respectively, critical regions hallmarking brain status of early phases of PD.
Funder
Ministero della Salute
Publisher
Springer Science and Business Media LLC
Subject
Behavioral Neuroscience,Psychiatry and Mental health,Cellular and Molecular Neuroscience,Neurology (clinical),Cognitive Neuroscience,Neurology,Radiology, Nuclear Medicine and imaging
Reference66 articles.
1. Allen, J. S., Bruss, J., Brown, C. K., & Damasio, H. (2005). Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging, 26(9), 1245–1260; discussion 1279–1282. 2. Alvares Pereira, G., Silva Nunes, M. V., Alzola, P., & Contador, I. (2022). Cognitive reserve and brain maintenance in aging and Dementia: An integrative review. Appl Neuropsychol Adult, 29(6), 1615–1625. 3. Anatürk, M., Demnitz, N., Ebmeier, K. P., & Sexton, C. E. (2018). A systematic review and meta-analysis of structural magnetic resonance imaging studies investigating cognitive and social activity levels in older adults. Neuroscience and Biobehavioral Reviews, 93, 71–84. 4. Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage, 125, 1063–1078. 5. Andersson, J. L. R., Graham, M. S., Drobnjak, I., Zhang, H., & Campbell, J. (2018). Susceptibility-induced distortion that varies due to motion: Correction in diffusion MR without acquiring additional data. Neuroimage, 171, 277–295.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|