Cognitive Reserve proxies can modulate motor and non-motor basal ganglia circuits in early Parkinson’s Disease

Author:

Di Tella SoniaORCID,Isernia SaraORCID,Cabinio Monia,Rossetto Federica,Borgnis Francesca,Pagliari Chiara,Cazzoli Marta,Navarro Jorge,Silveri Maria Caterina,Baglio Francesca

Abstract

AbstractParkinson’s Disease (PD) is hallmarked by dysfunctional circuitry between the basal ganglia and dorsolateral-prefrontal cortex. Recently progress has been made in understanding factors contributing to differential susceptibility to pathology mitigating disease-related cognitive decline. Cognitive reserve, the brain processing resources accumulated throughout life while engaged in mentally stimulating activities, can play an important protective role in cognitive performance. We tested the hypothesis that Cognitive Reserve proxies may exert an impact on the basal ganglia and dorsolateral-prefrontal atrophy in early PD. Forty-five early patients with PD and 20 age-gender-matched healthy controls (HC) completed the Cognitive Reserve Index questionnaire to quantify Cognitive Reserve proxies by three indexes (CRI-Education, CRI-Working Activity, CRI-Leisure Time) and a structural MRI examination (3T). Morphometrical indexes for basal ganglia (bilateral putamen, caudate, pallidum volume) and dorsolateral-prefrontal cortex (cortical thickness) were computed. Significant differences between HC and PD were tested by direct comparisons in demographics, cognitive level, and cognitive reserve proxies indexes. Then two multiple regression analyses were performed to identify predictors of the basal ganglia and dorsolateral-prefrontal cortex structural integrity. Regression analysis revealed that basal ganglia volume was significantly predicted by CRI-Education (pFDR = 0.029), sex (pFDR = 0.029), and Total Intracranial Volume (pFDR < 0.001). Instead, the dorsolateral-prefrontal thickness was predicted by CRI-Leisure Time (pFDR = 0.030) and age (pFDR = 0.010). Cognitive Reserve proxies, especially education and leisure-time activities, can play a protective role on the structural integrity of the basal ganglia and dorsolateral-prefrontal cortex, respectively, critical regions hallmarking brain status of early phases of PD.

Funder

Ministero della Salute

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Psychiatry and Mental health,Cellular and Molecular Neuroscience,Neurology (clinical),Cognitive Neuroscience,Neurology,Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3