Cortical 3-hinges could serve as hubs in cortico-cortical connective network

Author:

Zhang TuoORCID,Li Xiao,Jiang Xi,Ge Fangfei,Zhang Shu,Zhao Lin,Liu Huan,Huang Ying,Wang Xianqiao,Yang Jian,Guo Lei,Hu Xiaoping,Liu Tianming

Abstract

AbstractMapping the relation between cortical convolution and structural/functional brain architectures could provide deep insights into the mechanisms of brain development, evolution and diseases. In our previous studies, we found a unique gyral folding pattern, termed a 3-hinge, which was defined as the conjunction of three gyral crests. The uniqueness of the 3-hinge was evidenced by its thicker cortex and stronger fiber connections than other gyral regions. However, the role that 3-hinges play in cortico-cortical connective architecture remains unclear. To this end, we conducted MRI studies by constructing structural cortico-cortical connective networks based on a fine-granular cortical parcellation, the parcels of which were automatically labeled as 3-hinge, 2-hinge (ordinary gyrus) or sulcus. On human brains, 3-hinges possess significantly higher degrees, strengths and betweennesses than 2-hinges, suggesting that 3-hinges could serve more like hubs in the cortico-cortical connective network. This hypothesis gains supports from human functional network analyses, in which 3-hinges are involved in more global functional networks than ordinary gyri. In addition, 3-hinges could serve as ‘connector’ hubs rather than ‘provincial’ hubs and they account for a dominant proportion of nodes in the high-level ‘backbone’ of the network. These structural results are reproduced on chimpanzee and macaque brains, while the roles of 3-hinges as hubs become more pronounced in higher order primates. Our new findings could provide a new window to the relation between cortical convolution, anatomical connection and brain function.

Funder

National Natural Science Foundation of China

Foundation for the National Institutes of Health

National Science Foundation

Special Fund for Basic Scientific Research of Central Colleges

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Psychiatry and Mental health,Cellular and Molecular Neuroscience,Clinical Neurology,Cognitive Neuroscience,Neurology,Radiology Nuclear Medicine and imaging

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3