On the learning of addictive behavior: Sensation-seeking propensity predicts dopamine turnover in dorsal striatum

Author:

Chang Natalie Hong SiuORCID,Kumakura Yoshitaka,Møller Arne,Linnet Jakob,Bender Dirk,Doudet Doris J.,Vafaee Manouchehr Seyedi,Gjedde AlbertORCID

Abstract

AbstractWe asked if sensation-seeking is linked to premorbid personality characteristics in patients with addictive disorders, or the characteristics follow the sensation-seeking activity. We interpreted the former as a state associated with normal rates of dopamine synthesis, and the latter as a trait of individuals with abnormally high rates of synthesis. We previously determined dopaminergic receptor density in striatum, and we now tested the hypothesis that an elevated dopaminergic condition with increased extracellular dopamine and receptor density follows increased dopamine synthesis capacity in highly sensation-seeking individuals, as measured by positron emission tomography of 18 men with tracer fluorodopa (FDOPA). We detected a site in left caudate nucleus where the volume of distribution of FDOPA-derived metabolites correlated negatively with FDOPA metabolite turnover, consistent with decreased metabolite breakdown in highly sensation-seeking subjects. High rates of sensation-seeking attenuated the dopamine turnover in association with a low rate of dopamine recycling, low dopamine oxidation, and elevated extracellular dopamine and receptors in caudate nucleus. In contrast, low rates of sensation-seeking were associated with rapid dopamine recycling, rapid dopamine oxidation, low extracellular dopamine, and low receptor density. We conclude that the modulation of dopaminergic neurotransmission associated with sensation-seeking is a state of sensation-seeking, rather than a trait of personality following abnormal regulation of dopaminergic neurotransmission.

Funder

Danish Agency for Science and Higher Education

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Psychiatry and Mental health,Cellular and Molecular Neuroscience,Neurology (clinical),Cognitive Neuroscience,Neurology,Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3