Bayesian MEG time courses with fMRI priors

Author:

Wang YingyingORCID,Holland Scott K.

Abstract

AbstractMagnetoencephalography (MEG) records brain activity with excellent temporal and good spatial resolution, while functional magnetic resonance imaging (fMRI) offers good temporal and excellent spatial resolution. The aim of this study is to implement a Bayesian framework to use fMRI data as spatial priors for MEG inverse solutions. We used simulated MEG data with both evoked and induced activity and experimental MEG data from sixteen participants to examine the effectiveness of using fMRI spatial priors in MEG source reconstruction. For simulated MEG data, incorporating the prior information from fMRI increased the spatial resolution of MEG source reconstruction by 3 mm on average. For experimental MEG data, fMRI spatial information reduced the spurious clusters for evoked activity and showed more left-lateralized activation pattern for induced activity. The use of fMRI spatial priors greatly reduced location error for induced source in MEG data. Our results provide empirical evidence that the use of fMRI spatial priors improves the accuracy of MEG source reconstruction. The combined MEG and fMRI approach can provide neuroimaging data with better spatial and temporal resolutions to add another perspective to our understanding of the neurobiology of language. The potential clinical applications include pre-surgical evaluation of language function for epilepsy patients and evaluation of language network for children with language disorders.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Springer Science and Business Media LLC

Subject

Behavioral Neuroscience,Psychiatry and Mental health,Cellular and Molecular Neuroscience,Clinical Neurology,Cognitive Neuroscience,Neurology,Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3