Faster algorithms for counting subgraphs in sparse graphs

Author:

Bressan MarcoORCID

Abstract

AbstractGiven a k-node pattern graph H and an n-node host graph G, the subgraph counting problem asks to compute the number of copies of H in G. In this work we address the following question: can we count the copies of H faster if G is sparse? We answer in the affirmative by introducing a novel tree-like decomposition for directed acyclic graphs, inspired by the classic tree decomposition for undirected graphs. This decomposition gives a dynamic program for counting the homomorphisms of H in G by exploiting the degeneracy of G, which allows us to beat the state-of-the-art subgraph counting algorithms when G is sparse enough. For example, we can count the induced copies of any k-node pattern H in time $$2^{O(k^2)} O(n^{0.25k + 2} \log n)$$ 2 O ( k 2 ) O ( n 0.25 k + 2 log n ) if G has bounded degeneracy, and in time $$2^{O(k^2)} O(n^{0.625k + 2} \log n)$$ 2 O ( k 2 ) O ( n 0.625 k + 2 log n ) if G has bounded average degree. These bounds are instantiations of a more general result, parameterized by the degeneracy of G and the structure of H, which generalizes classic bounds on counting cliques and complete bipartite graphs. We also give lower bounds based on the Exponential Time Hypothesis, showing that our results are actually a characterization of the complexity of subgraph counting in bounded-degeneracy graphs.

Funder

European Research Council

Focused Award “Algorithms and Learning for AI”

Ministero dell’Istruzione, dell’Università e della Ricerca

Bertinoro International Center for Informatics

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameterised and Fine-Grained Subgraph Counting, Modulo 2;Algorithmica;2023-11-02

2. Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs;ACM Transactions on Algorithms;2023-06-24

3. The Complexity of Pattern Counting in Directed Graphs, Parameterised by the Outdegree;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02

4. Counting Homomorphic Cycles in Degenerate Graphs;ACM Transactions on Algorithms;2023-01-31

5. Counting Subgraphs in Degenerate Graphs;Journal of the ACM;2022-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3