Scheduling in the Random-Order Model

Author:

Albers Susanne,Janke MaximilianORCID

Abstract

AbstractMakespan minimization on identical machines is a fundamental problem in online scheduling. The goal is to assign a sequence of jobs to m identical parallel machines so as to minimize the maximum completion time of any job. Already in the 1960s, Graham showed that Greedy is $$(2-1/m)$$ ( 2 - 1 / m ) -competitive. The best deterministic online algorithm currently known achieves a competitive ratio of 1.9201. No deterministic online strategy can obtain a competitiveness smaller than 1.88. In this paper, we study online makespan minimization in the popular random-order model, where the jobs of a given input arrive as a random permutation. It is known that Greedy does not attain a competitive factor asymptotically smaller than 2 in this setting. We present the first improved performance guarantees. Specifically, we develop a deterministic online algorithm that achieves a competitive ratio of 1.8478. The result relies on a new analysis approach. We identify a set of properties that a random permutation of the input jobs satisfies with high probability. Then we conduct a worst-case analysis of our algorithm, for the respective class of permutations. The analysis implies that the stated competitiveness holds not only in expectation but with high probability. Moreover, it provides mathematical evidence that job sequences leading to higher performance ratios are extremely rare, pathological inputs. We complement the results by lower bounds, for the random-order model. We show that no deterministic online algorithm can achieve a competitive ratio smaller than 4/3. Moreover, no deterministic online algorithm can attain a competitiveness smaller than 3/2 with high probability.

Funder

European Research Council

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Load and Graph Balancing for Random Order Inputs;Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures;2024-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3