Self-Stabilizing and Private Distributed Shared Atomic Memory in Seldomly Fair Message Passing Networks

Author:

Dolev Shlomi,Petig Thomas,Schiller Elad M.ORCID

Abstract

AbstractWe study the problem of privately emulating shared memory in message-passing networks. The system includes clients that store and retrieve replicated information on N servers, out of which e are data-corrupting malicious. When a client accesses a data-corrupting malicious server, the data field of that server response might be different from the value it originally stored. However, all other control variables in the server reply and protocol actions are according to the server algorithm. For the coded atomic storage algorithms by Cadambe et al., we present an enhancement that ensures no information leakage and data-corrupting malicious fault-tolerance. We also consider recovery after the occurrence of transient faults that violate the assumptions according to which the system was designed to operate. After their last occurrence, transient faults leave the system in an arbitrary state (while the program code stays intact). We present a self-stabilizing algorithm, which recovers after the occurrence of transient faults. This addition to Cadambe et al. considers asynchronous settings as long as no transient faults occur. The recovery from transient faults that bring the system counters (close) to their maximal values may include the use of a global reset procedure, which requires the system run to be controlled by a fair scheduler. After the recovery period, the safety properties are provided for asynchronous system runs that are not necessarily controlled by fair schedulers. Since the recovery period is bounded and the occurrence of transient faults is extremely rare, we call this design criteria self-stabilization in the presence of seldom fairness. Our self-stabilizing algorithm uses a bounded amount of storage during asynchronous executions (that are not necessarily controlled by fair schedulers). To the best of our knowledge, we are the first to address privacy, data-corrupting malicious behavior, and self-stabilization in the context of emulating atomic shared memory in message-passing systems.

Funder

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-stabilizing Byzantine Multivalued Consensus: (extended abstract);Proceedings of the 25th International Conference on Distributed Computing and Networking;2024-01-04

2. Self-stabilizing Byzantine fault-tolerant repeated reliable broadcast;Theoretical Computer Science;2023-09

3. Self-stabilizing Byzantine-Tolerant Recycling;Lecture Notes in Computer Science;2023

4. Brief Announcement: Self-stabilizing Total-Order Broadcast;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3