Multistage s–t Path: Confronting Similarity with Dissimilarity

Author:

Fluschnik Till,Niedermeier Rolf,Schubert Carsten,Zschoche PhilippORCID

Abstract

AbstractAddressing a quest by Gupta et al. (in: Proceedings of the 41st international colloquium on automata, languages, and programming (ICALP 2014), vol 8572 of LNCS. Springer, pp 563–575, 2014), we provide a first, comprehensive study of finding a short st path in the multistage graph model, referred to as the MultistagestPath problem. Herein, given a sequence of graphs over the same vertex set but changing edge sets, the task is to find short st paths in each graph (“snapshot”) such that in the found path sequence the consecutive st paths are “similar”. We measure similarity by the size of the symmetric difference of either the vertex set (vertex-similarity) or the edge set (edge-similarity) of any two consecutive paths. We prove that these two variants of MultistagestPath are already $${\text {NP}}$$ NP -hard for an input sequence of only two snapshots and maximum vertex degree four. Motivated by this fact and natural applications of this scenario e.g. in traffic route planning, we perform a parameterized complexity analysis. Among other results, for both variants, vertex- and edge-similarity, we prove parameterized hardness ($${\text {W[1]}}$$ W[1] -hardness) regarding the parameter path length (solution size). As a further conceptual investigation, we then modify the multistage model by asking for dissimilar consecutive paths. As one of the main technical results (employing so-called representative sets known from non-temporal settings), we prove that dissimilarity allows for fixed-parameter tractability for the parameter solution size, contrasting with our W[1]-hardness proof of the corresponding similarity case. We also provide partially positive results concerning efficient and effective data reduction (kernelization).

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Reference48 articles.

1. Bampis, E., Escoffier, B., Lampis, M., Paschos, V.T.: Multistage matchings. In: Proceedings of the 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018), vol. 101 of LIPIcs, pp. 7:1–7:13. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2018)

2. Bampis, E., Escoffier, B., Schewior, K., Teiller, A.: Online multistage subset maximization problems. In: Proceedings of the 27th the Annual European Symposium on Algorithms (ESA 2020), vol. 144 of LIPIcs, pp .11:1–11:14. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2019a)

3. Bampis, E., Escoffier, B., Teiller, A.: Multistage knapsack. In: Proceedings of the 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019), vol. 138 of LIPIcs, pp. 22:1–22:14. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2019b)

4. Bampis, E., Escoffier, B., Kononov, A.V.: LP-based algorithms for multistage minimization problems. In: Proceedings of the 18th International Workshop on Approximation and Online Algorithms (WAOA 2020), vol. 12806 of LNCS, pp. 1–15. Springer (2020). https://doi.org/10.1007/978-3-030-80879-2_1

5. Bentert, M., Himmel, A.-S., Nichterlein, A., Niedermeier, R.: Efficient computation of optimal temporal walks under waiting-time constraints. Appl. Netw. Sci. 5, 1–26 (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3