Parameterized Complexity of Directed Spanner Problems

Author:

Fomin Fedor V.,Golovach Petr A.ORCID,Lochet William,Misra Pranabendu,Saurabh Saket,Sharma Roohani

Abstract

AbstractWe initiate the parameterized complexity study of minimum t-spanner problems on directed graphs. For a positive integer t, a multiplicative t-spanner of a (directed) graph G is a spanning subgraph H such that the distance between any two vertices in H is at most t times the distance between these vertices in G, that is, H keeps the distances in G up to the distortion (or stretch) factor t. An additive t-spanner is defined as a spanning subgraph that keeps the distances up to the additive distortion parameter t, that is, the distances in H and G differ by at most t. The task of Directed Multiplicative Spanner is, given a directed graph G with m arcs and positive integers t and k, decide whether G has a multiplicative t-spanner with at most $$m-k$$ m - k arcs. Similarly, Directed Additive Spanner asks whether G has an additive t-spanner with at most $$m-k$$ m - k arcs. We show that (i) Directed Multiplicative Spanner admits a polynomial kernel of size $$\mathcal {O}(k^4t^5)$$ O ( k 4 t 5 ) and can be solved in randomized $$(4t)^k\cdot n^{\mathcal {O}(1)}$$ ( 4 t ) k · n O ( 1 ) time, (ii) the weighted variant of Directed Multiplicative Spanner can be solved in $$k^{2k}\cdot n^{\mathcal {O}(1)}$$ k 2 k · n O ( 1 ) time on directed acyclic graphs, (iii) Directed Additive Spanner is $${{\,\mathrm{\mathsf{W}}\,}}[1]$$ W [ 1 ] -hard when parameterized by k for every fixed $$t\ge 1$$ t 1 even when the input graphs are restricted to be directed acyclic graphs. The latter claim contrasts with the recent result of Kobayashi from STACS 2020 that the problem for undirected graphs is $${{\,\mathrm{\mathsf{FPT}}\,}}$$ FPT when parameterized by t and k.

Funder

Norges Forskningsråd

European Research Council

Swarnajayanti Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3