On the Parameterized Complexity of Bend-Minimum Orthogonal Planarity

Author:

Di Giacomo Emilio,Didimo Walter,Liotta Giuseppe,Montecchiani Fabrizio,Ortali Giacomo

Abstract

AbstractComputing planar orthogonal drawings with the minimum number of bends is one of the most studied topics in Graph Drawing. The problem is known to be NP-hard, even when we want to test the existence of a rectilinear planar drawing, i.e., an orthogonal drawing without bends (Garg and Tamassia in SIAM J Comput 31(2):601–625, 2001). From the parameterized complexity perspective, the problem is fixed-parameter tractable when parameterized by the sum of three parameters: the number b of bends, the number k of vertices of degree at most two, and the treewidth $$\textsf{tw}$$ tw of the input graph (Di Giacomo et al. in J Comput Syst Sci 125:129–148, 2022). We improve this last result by showing that the problem remains fixed-parameter tractable when parameterized only by $$b+k$$ b + k . As a consequence, rectilinear planarity testing lies in FPT parameterized by the number of vertices of degree at most two. We also prove that our choice of parameters is minimal, as deciding if an orthogonal drawing with at most b bends exists is already NP-hard when k is zero (i.e., the problem is para-NP-hard parameterized in k); hence, there is neither an FPT nor an XP algorithm parameterized only by the parameter k (unless P = NP). In addition, we prove that the problem is W[1]-hard parameterized by $$k+\textsf{tw}$$ k + tw , complementing a recent result (Jansen et al. in Upward and orthogonal planarity are W[1]-hard parameterized by treewidth. CoRR, abs/2309.01264, 2023; in: Bekos MA, Chimani M (eds) Graph Drawing and Network Visualization, vol 14466, Springer, Cham, pp 203–217, 2023) that shows W[1]-hardness for the parameterization $$b+\textsf{tw}$$ b + tw . As a consequence, we are able to trace a clear parameterized tractability landscape for the bend-minimum orthogonal planarity problem with respect to the three parameters b, k, and $$\textsf{tw}$$ tw .

Funder

Ministero dell'Università e della Ricerca

Università degli Studi di Perugia

Publisher

Springer Science and Business Media LLC

Reference24 articles.

1. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)

2. Bodlaender, H.L., Groenland, C., Jacob, H., Pilipczuk, M., Pilipczuk, M.: On the complexity of problems on tree-structured graphs. In: Dell, H., Nederlof, J. (eds.), 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, LIPIcs, vol. 249, pp. 6:1–6:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

3. Chaplick, S., Di Giacomo, E., Frati, F., Ganian, R., Raftopoulou, C.N., Simonov, K.: Parameterized algorithms for upward planarity. In: Goaoc, X., Kerber, M. (eds.), 38th International Symposium on Computational Geometry, SoCG 2022, June 7–10, 2022, Berlin, Germany, LIPIcs, vol. 224, pp. 26:1–26:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

4. Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. J. Graph Algorithms Appl. 16(3), 635–650 (2012)

5. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3