Reconfiguring Shortest Paths in Graphs

Author:

Gajjar Kshitij,Jha Agastya Vibhuti,Kumar Manish,Lahiri Abhiruk

Abstract

AbstractReconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming $${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$ P NP ), even for relaxed variants of the problem (assuming $${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$ P PSPACE ). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer $$k\ge 2$$ k 2 ) contiguous vertices on a shortest path can be changed at a time.

Funder

H2020 European Research Council

Faculty of Science, National University of Singapore

Rita Altura Trust Chair

Lynne and William Frankel Center for Computer Science

Israel Science Foundation

Ministerstvo Školství, Mládeže a Tělovýchovy

Charles University

Publisher

Springer Science and Business Media LLC

Reference64 articles.

1. Gajjar, K., Jha, A.V., Kumar, M., Lahiri, A.: Reconfiguring shortest paths in graphs. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Virtual Event, February 22–March 1, 2022, pp. 9758–9766. AAAI Press, USA. https://ojs.aaai.org/index.php/AAAI/article/view/21211 (2022)

2. Ratner, D., Warmuth, M.K.: Finding a shortest solution for the N $${\times }$$ N extension of the 15-puzzle is intractable. In: Proceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA, USA, August 11-15, 1986. Volume 1: Science, USA, pp. 168–172. http://www.aaai.org/Library/AAAI/1986/aaai86-027.php (1986)

3. Goldreich, O.: Finding the shortest move-sequence in the graph-generalized 15-puzzle is np-hard. In: Studies in Complexity and Cryptography. Miscellanea on the Interplay Between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman. Lecture Notes in Computer Science, vol. 6650, pp. 1–5. Springer, USA. https://doi.org/10.1007/978-3-642-22670-0_1 (2011)

4. Demaine, E.D., Demaine, M.L., Eisenstat, S., Lubiw, A., Winslow, A.: Algorithms for solving rubik’s cubes. In: Algorithms–ESA 2011–19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6942, pp. 689–700. https://doi.org/10.1007/978-3-642-23719-5_58 (2011)

5. Demaine, E.D., Eisenstat, S., Rudoy, M.: Solving the rubik’s cube optimally is np-complete. In: 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France. LIPIcs, vol. 96, pp. 24–12413. Dagstuhl, Germany. https://doi.org/10.4230/LIPIcs.STACS.2018.24 (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3