Algorithms and Complexity on Indexing Founder Graphs

Author:

Equi Massimo,Norri Tuukka,Alanko Jarno,Cazaux Bastien,Tomescu Alexandru I.,Mäkinen VeliORCID

Abstract

AbstractWe study the problem of matching a string in a labeled graph. Previous research has shown that unless theOrthogonal Vectors Hypothesis(OVH) is false, one cannot solve this problem in strongly sub-quadratic time, nor index the graph in polynomial time to answer queries efficiently (Equi et al. ICALP 2019, SOFSEM 2021). These conditional lower-bounds cover even deterministic graphs with binary alphabet, but there naturally exist also graph classes that are easy to index: For example,Wheeler graphs(Gagie et al. Theor. Comp. Sci.2017) cover graphs admitting a Burrows-Wheeler transform -based indexing scheme. However, it is NP-complete to recognize if a graph is a Wheeler graph (Gibney, Thankachan, ESA 2019). We propose an approach to alleviate the construction bottleneck of Wheeler graphs. Rather than starting from an arbitrary graph, we study graphs induced frommultiple sequence alignments().Elastic degenerate strings(Bernadini et al. SPIRE 2017, ICALP 2019) can be seen as such graphs, and we introduce here their generalization:elastic founder graphs. We first prove that even such induced graphs are hard to index under OVH. Then we introduce two subclasses, repeat-free and semi-repeat-free graphs, that are easy to index. We give a linear time algorithm to construct a repeat-free (non-elastic) founder graph from a gapless , and (parameterized) near-linear time algorithms to construct a semi-repeat-free (repeat-free, respectively) elastic founder graph from general . Finally, we show that repeat-free founder graphs admit a reduction to Wheeler graphs in polynomial time.

Funder

Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finding maximal exact matches in graphs;Algorithms for Molecular Biology;2024-03-11

2. Elastic founder graphs improved and enhanced;Theoretical Computer Science;2024-01

3. On the Complexity of String Matching for Graphs;ACM Transactions on Algorithms;2023-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3