The Subfield and Extended Codes of a Subclass of Optimal Three-Weight Cyclic Codes

Author:

Hernández Félix,Vega Gerardo

Abstract

AbstractA class of optimal three-weight $$[q^k-1,k+1,q^{k-1}(q-1)-1]$$ [ q k - 1 , k + 1 , q k - 1 ( q - 1 ) - 1 ] cyclic codes over $${\mathrm{I\!F}}_q$$ I F q , with $$k\ge 2$$ k 2 , achieving the Griesmer bound, was presented by Heng and Yue (IEEE Trans Inf Theory 62(8):4501–4513, 2016. https://doi.org/10.1109/TIT.2016.2550029). In this paper we study some of the subfield codes of this class of optimal cyclic codes when $$k=2$$ k = 2 . The weight distributions of the subfield codes are settled. It turns out that some of these codes are optimal and others have the best known parameters. The duals of the subfield codes are also investigated and found to be almost optimal with respect to the sphere-packing bound. In addition, the covering structure for the studied subfield codes is determined. Some of these codes are found to have the important property that any nonzero codeword is minimal, which is a desirable property that is useful in the design of a secret sharing scheme based on a linear code. Moreover, a specific example of a secret sharing scheme based on one of these subfield codes is given. Finally, a class of optimal two-weight linear codes over $${\mathrm{I\!F}}_q$$ I F q , achieving the Griesmer bound, whose duals are almost optimal with respect to the sphere-packing bound is presented. Through a different approach, this class of optimal two-weight linear codes was reported very recently by Heng (IEEE Trans Inf Theory 69(2):978–994, 2023. https://doi.org/10.1109/TIT.2022.3203380). Furthermore, it is shown that these optimal codes can be used to construct strongly regular graphs.

Funder

PAPIIT-UNAM

Consejo Nacional de Humanidades, Ciencias y Tecnologías

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Obtaining new classes of optimal linear codes by puncturing and shortening optimal cyclic codes;Applicable Algebra in Engineering, Communication and Computing;2024-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3