Runtime Analyses of the Population-Based Univariate Estimation of Distribution Algorithms on LeadingOnes

Author:

Lehre Per Kristian,Nguyen Phan Trung HaiORCID

Abstract

AbstractWe perform rigorous runtime analyses for the univariate marginal distribution algorithm (UMDA) and the population-based incremental learning (PBIL) Algorithm on LeadingOnes. For the UMDA, the currently known expected runtime on the function is $${\mathcal {O}}\left( n\lambda \log \lambda +n^2\right)$$ O n λ log λ + n 2 under an offspring population size $$\lambda =\Omega (\log n)$$ λ = Ω ( log n ) and a parent population size $$\mu \le \lambda /(e(1+\delta ))$$ μ λ / ( e ( 1 + δ ) ) for any constant $$\delta >0$$ δ > 0 (Dang and Lehre, GECCO 2015). There is no lower bound on the expected runtime under the same parameter settings. It also remains unknown whether the algorithm can still optimise the LeadingOnes function within a polynomial runtime when $$\mu \ge \lambda /(e(1+\delta ))$$ μ λ / ( e ( 1 + δ ) ) . In case of the PBIL, an expected runtime of $${\mathcal {O}}(n^{2+c})$$ O ( n 2 + c ) holds for some constant $$c \in (0,1)$$ c ( 0 , 1 ) (Wu, Kolonko and Möhring, IEEE TEVC 2017). Despite being a generalisation of the UMDA, this upper bound is significantly asymptotically looser than the upper bound of $${\mathcal {O}}\left( n^2\right)$$ O n 2 of the UMDA for $$\lambda =\Omega (\log n)\cap {\mathcal {O}}\left( n/\log n\right)$$ λ = Ω ( log n ) O n / log n . Furthermore, the required population size is very large, i.e., $$\lambda =\Omega (n^{1+c})$$ λ = Ω ( n 1 + c ) . Our contributions are then threefold: (1) we show that the UMDA with $$\mu =\Omega (\log n)$$ μ = Ω ( log n ) and $$\lambda \le \mu e^{1-\varepsilon }/(1+\delta )$$ λ μ e 1 - ε / ( 1 + δ ) for any constants $$\varepsilon \in (0,1)$$ ε ( 0 , 1 ) and $$0<\delta \le e^{1-\varepsilon }-1$$ 0 < δ e 1 - ε - 1 requires an expected runtime of $$e^{\Omega (\mu )}$$ e Ω ( μ ) on LeadingOnes, (2) an upper bound of $${\mathcal {O}}\left( n\lambda \log \lambda +n^2\right)$$ O n λ log λ + n 2 is shown for the PBIL, which improves the current bound $${\mathcal {O}}\left( n^{2+c}\right)$$ O n 2 + c by a significant factor of $$\Theta (n^{c})$$ Θ ( n c ) , and (3) we for the first time consider the two algorithms on the LeadingOnes function in a noisy environment and obtain an expected runtime of $${\mathcal {O}}\left( n^2\right)$$ O n 2 for appropriate parameter settings. Our results emphasise that despite the independence assumption in the probabilistic models, the UMDA and the PBIL with fine-tuned parameter choices can still cope very well with variable interactions.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Already Moderate Population Sizes Provably Yield Strong Robustness to Noise;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

2. Fourier Analysis Meets Runtime Analysis: Precise Runtimes on Plateaus;Algorithmica;2024-05-10

3. Choosing the right algorithm with hints from complexity theory;Information and Computation;2024-01

4. Self-adaptation Can Improve the Noise-tolerance of Evolutionary Algorithms;Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms;2023-08-30

5. More Precise Runtime Analyses of Non-elitist Evolutionary Algorithms in Uncertain Environments;Algorithmica;2022-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3