Level-Planar Drawings with Few Slopes
-
Published:2021-11-19
Issue:1
Volume:84
Page:176-196
-
ISSN:0178-4617
-
Container-title:Algorithmica
-
language:en
-
Short-container-title:Algorithmica
Author:
Brückner GuidoORCID, Krisam Nadine, Mchedlidze Tamara
Abstract
AbstractWe introduce and study level-planar straight-line drawings with a fixed number $$\lambda $$
λ
of slopes. For proper level graphs (all edges connect vertices of adjacent levels), we give an $$O(n \log ^2 n / \log \log n)$$
O
(
n
log
2
n
/
log
log
n
)
-time algorithm that either finds such a drawing or determines that no such drawing exists. Moreover, we consider the partial drawing extension problem, where we seek to extend an immutable drawing of a subgraph to a drawing of the whole graph, and the simultaneous drawing problem, which asks about the existence of drawings of two graphs whose restrictions to their shared subgraph coincide. We present $$O(n^{4/3} \log n)$$
O
(
n
4
/
3
log
n
)
-time and $$O(\lambda n^{10/3} \log n)$$
O
(
λ
n
10
/
3
log
n
)
-time algorithms for these respective problems on proper level-planar graphs. We complement these positive results by showing that testing whether non-proper level graphs admit level-planar drawings with $$\lambda $$
λ
slopes is -hard even in restricted cases.
Funder
Karlsruher Institut für Technologie (KIT)
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,General Computer Science
Reference43 articles.
1. FAUSTEDITION. http://www.faustedition.net/macrogenesis/dag 2. Angelini, P., Chaplick, S., Cornelsen, S., Da Lozzo, G., Di Battista, G., Eades, P., Kindermann, P., Kratochvíl, J., Lipp, F., Rutter, I.: Simultaneous orthogonal planarity. In: Y. Hu, M. Nöllenburg (eds.) Graph Drawing and Network Visualization—24th International Symposium, GD 2016, Athens, Greece, September 19-21, 2016, Revised Selected Papers, Lecture Notes in Computer Science, vol. 9801, pp. 532–545. Springer (2016). https://doi.org/10.1007/978-3-319-50106-2_41 3. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Beyond level planarity: Cyclic, torus, and simultaneous level planarity. Theor. Comput. Sci. 804, 161–170 (2020). https://doi.org/10.1016/j.tcs.2019.11.024 4. Barát, J., Matousek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric thickness. Electron. J. Comb. 13(1) (2006). https://doi.org/10.37236/1029 5. Bekos, M.A., Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: Universal slope sets for upward planar drawings. In: T.C. Biedl, A. Kerren (eds.) Graph Drawing and Network Visualization - 26th International Symposium, GD 2018, Barcelona, Spain, September 26-28, 2018, Proceedings, Lecture Notes in Computer Science, vol. 11282, pp. 77–91. Springer (2018). https://doi.org/10.1007/978-3-030-04414-5_6
|
|