Certifying Fully Dynamic Algorithms for Recognition and Hamiltonicity of Threshold and Chain Graphs

Author:

Beisegel JesseORCID,Köhler Ekkehard,Scheffler RobertORCID,Strehler MartinORCID

Abstract

AbstractSolving problems on graphs dynamically calls for algorithms to function under repeated modifications to the graph and to be more efficient than solving the problem for the whole graph from scratch after each modification. Dynamic algorithms have been considered for several graph properties, for example connectivity, shortest paths and graph recognition. In this paper we present fully dynamic algorithms for the recognition of threshold graphs and chain graphs, which are optimal in the sense that the costs per modification are linear in the number of modified edges. Furthermore, our algorithms also consider the addition and deletion of sets of vertices as well as edges. In the negative case, i.e., where the graph is not a threshold graph or chain graph anymore, our algorithms return a certificate of constant size. Additionally, we present optimal fully dynamic algorithms for the Hamiltonian cycle problem and the Hamiltonian path problem on threshold and chain graphs which return a vertex cutset as certificate for the non-existence of such a path or cycle in the negative case.

Funder

Deutscher Akademischer Austauschdienst

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3