The Power of Cut-Based Parameters for Computing Edge-Disjoint Paths
-
Published:2020-10-21
Issue:2
Volume:83
Page:726-752
-
ISSN:0178-4617
-
Container-title:Algorithmica
-
language:en
-
Short-container-title:Algorithmica
Author:
Ganian RobertORCID, Ordyniak Sebastian
Abstract
AbstractThis paper revisits the classical edge-disjoint paths (EDP) problem, where one is given an undirected graph G and a set of terminal pairs P and asks whether G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Our aim is to identify structural properties (parameters) of graphs which allow the efficient solution of EDP without restricting the placement of terminals in P in any way. In this setting, EDP is known to remain NP-hard even on extremely restricted graph classes, such as graphs with a vertex cover of size 3. We present three results which use edge-separator based parameters to chart new islands of tractability in the complexity landscape of EDP. Our first and main result utilizes the fairly recent structural parameter tree-cut width (a parameter with fundamental ties to graph immersions and graph cuts): we obtain a polynomial-time algorithm for EDP on every graph class of bounded tree-cut width. Our second result shows that EDP parameterized by tree-cut width is unlikely to be fixed-parameter tractable. Our final, third result is a polynomial kernel for EDP parameterized by the size of a minimum feedback edge set in the graph.
Funder
FWF Austrian Science Fund
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,General Computer Science
Reference26 articles.
1. Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments of sums of random variables. Probab. Math. Stat. 30(2), 185–205 (2010) 2. Chekuri, C., Khanna, S., Shepherd, F.B.: An O(sqrt(n)) approximation and integrality gap for disjoint paths and unsplittable flow. Theory Comput. 2(7), 137–146 (2006) 3. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000) 4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015) 5. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2014)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|