Self-adjusting Population Sizes for Non-elitist Evolutionary Algorithms: Why Success Rates Matter

Author:

Hevia Fajardo Mario AlejandroORCID,Sudholt DirkORCID

Abstract

AbstractEvolutionary algorithms (EAs) are general-purpose optimisers that come with several parameters like the sizes of parent and offspring populations or the mutation rate. It is well known that the performance of EAs may depend drastically on these parameters. Recent theoretical studies have shown that self-adjusting parameter control mechanisms that tune parameters during the algorithm run can provably outperform the best static parameters in EAs on discrete problems. However, the majority of these studies concerned elitist EAs and we do not have a clear answer on whether the same mechanisms can be applied for non-elitist EAs. We study one of the best-known parameter control mechanisms, the one-fifth success rule, to control the offspring population size $$\lambda $$ λ in the non-elitist $${(1,\lambda )}$$ ( 1 , λ )  EA. It is known that the $${(1,\lambda )}$$ ( 1 , λ )  EA has a sharp threshold with respect to the choice of $$\lambda $$ λ where the expected runtime on the benchmark function OneMax changes from polynomial to exponential time. Hence, it is not clear whether parameter control mechanisms are able to find and maintain suitable values of $$\lambda $$ λ . For OneMax we show that the answer crucially depends on the success rate s (i. e. a one-$$(s+1)$$ ( s + 1 ) -th success rule). We prove that, if the success rate is appropriately small, the self-adjusting $${(1,\lambda )}$$ ( 1 , λ )  EA optimises OneMax in O(n) expected generations and $$O(n \log n)$$ O ( n log n ) expected evaluations, the best possible runtime for any unary unbiased black-box algorithm. A small success rate is crucial: we also show that if the success rate is too large, the algorithm has an exponential runtime on OneMax and other functions with similar characteristics.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Reference51 articles.

1. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Berlin (2015)

2. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization—Algorithms and Their Computational Complexity. Springer, Berlin, Heidelberg (2010)

3. Jansen, T.: Analyzing Evolutionary Algorithms: The Computer Science Perspective. Springer, Berlin (2013)

4. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics—Foundations and Recent Developments. Series on Theoretical Computer Science, vol. 1. World Scientific, USA (2011)

5. Doerr, B., Neumann, F. (eds.): Theory of Evolutionary Computation: Recent Developments in Discrete Optimization. Springer, Berlin (2020)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3