Robust Reoptimization of Steiner Trees

Author:

Goyal Keshav,Mömke TobiasORCID

Abstract

AbstractIn reoptimization, one is given an optimal solution to a problem instance and a (locally) modified instance. The goal is to obtain a solution for the modified instance. We aim to use information obtained from the given solution in order to obtain a better solution for the new instance than we are able to compute from scratch. In this paper, we consider Steiner tree reoptimization and address the optimality requirement of the provided solution. Instead of assuming that we are provided an optimal solution, we relax the assumption to the more realistic scenario where we are given an approximate solution with an upper bound on its performance guarantee. We show that for Steiner tree reoptimization there is a clear separation between local modifications where optimality is crucial for obtaining improved approximations and those instances where approximate solutions are acceptable starting points. For some of the local modifications that have been considered in previous research, we show that for every fixed $$\varepsilon > 0$$ ε > 0 , approximating the reoptimization problem with respect to a given $$(1+\varepsilon )$$ ( 1 + ε ) -approximation is as hard as approximating the Steiner tree problem itself. In contrast, with a given optimal solution to the original problem it is known that one can obtain considerably improved results. Furthermore, we provide a new algorithmic technique that, with some further insights, allows us to obtain improved performance guarantees for Steiner tree reoptimization with respect to all remaining local modifications that have been considered in the literature: a required node of degree more than one becomes a Steiner node; a Steiner node becomes a required node; the cost of one edge is increased.

Funder

DFG

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3