Computing Generalized Convolutions Faster Than Brute Force

Author:

Esmer Barış CanORCID,Kulik Ariel,Marx DánielORCID,Schepper PhilippORCID,Węgrzycki KarolORCID

Abstract

AbstractIn this paper, we consider a general notion of convolution. Let $$D$$ D be a finite domain and let $$D^n$$ D n be the set of n-length vectors (tuples) of $$D$$ D . Let $$f :D\times D\rightarrow D$$ f : D × D D be a function and let $$\oplus _f$$ f be a coordinate-wise application of f. The $$f$$ f -Convolution of two functions $$g,h :D^n \rightarrow \{-M,\ldots ,M\}$$ g , h : D n { - M , , M } is $$\begin{aligned} (g \mathbin {\circledast _{f}}h)(\textbf{v}) {:}{=}\sum _{\begin{array}{c} \textbf{v}_g,\textbf{v}_h \in D^n\\ \text {s.t. } \textbf{v}= \textbf{v}_g \oplus _f \textbf{v}_h \end{array}} g(\textbf{v}_g) \cdot h(\textbf{v}_h) \end{aligned}$$ ( g f h ) ( v ) : = v g , v h D n s.t. v = v g f v h g ( v g ) · h ( v h ) for every $$\textbf{v}\in D^n$$ v D n . This problem generalizes many fundamental convolutions such as Subset Convolution, XOR Product, Covering Product or Packing Product, etc. For arbitrary function f and domain $$D$$ D we can compute $$f$$ f -Convolution via brute-force enumeration in $$\widetilde{{\mathcal {O}}}(|D|^{2n} \cdot \textrm{polylog}(M))$$ O ~ ( | D | 2 n · polylog ( M ) ) time. Our main result is an improvement over this naive algorithm. We show that $$f$$ f -Convolution can be computed exactly in $$\widetilde{{\mathcal {O}}}( (c \cdot |D|^2)^{n} \cdot \textrm{polylog}(M))$$ O ~ ( ( c · | D | 2 ) n · polylog ( M ) ) for constant $$c {:}{=}3/4$$ c : = 3 / 4 when $$D$$ D has even cardinality. Our main observation is that a cyclic partition of a function $$f :D\times D\rightarrow D$$ f : D × D D can be used to speed up the computation of $$f$$ f -Convolution, and we show that an appropriate cyclic partition exists for every f. Furthermore, we demonstrate that a single entry of the $$f$$ f -Convolution can be computed more efficiently. In this variant, we are given two functions $$g,h :D^n \rightarrow \{-M,\ldots ,M\}$$ g , h : D n { - M , , M } alongside with a vector $$\textbf{v}\in D^n$$ v D n and the task of the $$f$$ f -Query problem is to compute integer $$(g \mathbin {\circledast _{f}}h)(\textbf{v})$$ ( g f h ) ( v ) . This is a generalization of the well-known Orthogonal Vectors problem. We show that $$f$$ f -Query can be computed in $$\widetilde{{\mathcal {O}}}(|D|^{\frac{\omega }{2} n} \cdot \textrm{polylog}(M))$$ O ~ ( | D | ω 2 n · polylog ( M ) ) time, where $$\omega \in [2,2.372)$$ ω [ 2 , 2.372 ) is the exponent of currently fastest matrix multiplication algorithm.

Funder

European Research Council

Helmholtz-Zentrum für Informationssicherheit – CISPA gGmbH

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Reference41 articles.

1. Abboud, A., Williams, R.R., Yu, H.: More applications of the polynomial method to algorithm design. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4–6, 2015, pp. 218–230. SIAM (2015)

2. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Marx D (ed.) Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10–13, 2021. SIAM, pp. 522–539 (2021)

3. Bennett, M.A., Martin, G., O’Bryant, K., Rechnitzer, A.: Explicit bounds for primes in arithmetic progressions. Ill. J. Math. 62(1–4), 427–532 (2018)

4. Beth, T.: Verfahren der schnellen Fourier-Transformation: die allgemeine diskrete Fourier-Transformation–ihre algebraische Beschreibung, Komplexität und Implementierung, vol. 61. Teubner (1984)

5. Björklund, A., Husfeldt, T.: The parity of directed Hamiltonian cycles. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29 October, 2013, Berkeley, CA, USA, pp. 727–735. IEEE Computer Society (2013)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3