Monotone Circuit Lower Bounds from Robust Sunflowers

Author:

Cavalar Bruno PasqualottoORCID,Kumar Mrinal,Rossman Benjamin

Abstract

AbstractRobust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity Rossman (SIAM J. Comput. 43:256–279, 2014), DNF sparsification Gopalan et al. (Comput. Complex. 22:275–310 2013), randomness extractors Li et al. (In: APPROX-RANDOM, LIPIcs 116:51:1–13, 2018), and recent advances on the Erdős-Rado sunflower conjecture Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) Lovett et al. (From dnf compression to sunflower theorems via regularity, 2019) Rao (Discrete Anal. 8,2020). The recent breakthrough of Alweiss, Lovett, Wu and Zhang Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) gives an improved bound on the maximum size of a w-set system that excludes a robust sunflower. In this paper, we use this result to obtain an $$\exp (n^{1/2-o(1)})$$ exp ( n 1 / 2 - o ( 1 ) ) lower bound on the monotone circuit size of an explicit n-variate monotone function, improving the previous best known $$\exp (n^{1/3-o(1)})$$ exp ( n 1 / 3 - o ( 1 ) ) due to Andreev (Algebra and Logic, 26:1–18, 1987) and Harnik and Raz (In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, ACM, New York, 2000). We also show an $$\exp (\varOmega (n))$$ exp ( Ω ( n ) ) lower bound on the monotone arithmetic circuit size of a related polynomial via a very simple proof. Finally, we introduce a notion of robust clique-sunflowers and use this to prove an $$n^{\varOmega (k)}$$ n Ω ( k ) lower bound on the monotone circuit size of the CLIQUE function for all $$k \leqslant n^{1/3-o(1)}$$ k n 1 / 3 - o ( 1 ) , strengthening the bound of Alon and Boppana (Combinatorica, 7:1–22, 1987).

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Alfred P. Sloan Foundation

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3