Tree Automata and Pigeonhole Classes of Matroids: I

Author:

Funk Daryl,Mayhew DillonORCID,Newman Mike

Abstract

AbstractHliněný’s Theorem shows that any sentence in the monadic second-order logic of matroids can be tested in polynomial time, when the input is limited to a class of $${\mathbb {F}}$$ F -representable matroids with bounded branch-width (where $${\mathbb {F}}$$ F is a finite field). If each matroid in a class can be decomposed by a subcubic tree in such a way that only a bounded amount of information flows across displayed separations, then the class has bounded decomposition-width. We introduce the pigeonhole property for classes of matroids: if every subclass with bounded branch-width also has bounded decomposition-width, then the class is pigeonhole. An efficiently pigeonhole class has a stronger property, involving an efficiently-computable equivalence relation on subsets of the ground set. We show that Hliněný’s Theorem extends to any efficiently pigeonhole class. In a sequel paper, we use these ideas to extend Hliněný’s Theorem to the classes of fundamental transversal matroids, lattice path matroids, bicircular matroids, and $$H$$ H -gain-graphic matroids, where H is any finite group. We also give a characterisation of the families of hypergraphs that can be described via tree automata: a family is defined by a tree automaton if and only if it has bounded decomposition-width. Furthermore, we show that if a class of matroids has the pigeonhole property, and can be defined in monadic second-order logic, then any subclass with bounded branch-width has a decidable monadic second-order theory.

Funder

Victoria University of Wellington

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Reference26 articles.

1. Bixby, R.E., Cunningham, W.H.: Matroid optimization and algorithms. In: Handbook of Combinatorics, vol. 1, 2, pp. 551–609. Elsevier, Amsterdam (1995)

2. Bonin, J.E.: Lattice path matroids: the excluded minors. J. Comb. Theory Ser. B 100(6), 585–599 (2010)

3. Bonin, J.E., Kung, J.P.S., de Mier, A.: Characterizations of transversal and fundamental transversal matroids. Electron. J. Comb. 18(1), 106, 16 (2011)

4. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

5. Cunningham, W.H.: Improved bounds for matroid partition and intersection algorithms. SIAM J. Comput. 15(4), 948–957 (1986)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tree Automata and Pigeonhole Classes of Matroids: II;The Electronic Journal of Combinatorics;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3