Non-Monochromatic and Conflict-Free Colorings on Tree Spaces and Planar Network Spaces
-
Published:2019-10-31
Issue:5
Volume:82
Page:1081-1100
-
ISSN:0178-4617
-
Container-title:Algorithmica
-
language:en
-
Short-container-title:Algorithmica
Author:
Aronov BorisORCID, de Berg Mark, Markovic AleksandarORCID, Woeginger Gerhard
Abstract
Abstract
It is well known that any set of n intervals in $$\mathbb {R} ^1$$R1 admits a non-monochromatic coloring with two colors and a conflict-free coloring with three colors. We investigate generalizations of this result to colorings of objects in more complex 1-dimensional spaces, namely so-called tree spaces and planar network spaces.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek National Science Foundation Bonfils-Stanton Foundation
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,General Computer Science
Reference16 articles.
1. Abam, M.A., Rezaei Seraji, M.J., Shadravan, M.: Online conflict-free coloring of intervals. Sci. Iran. 21, 2138–2141 (2014) 2. Abel, Z., Alvarez, V., Demaine, E.D., Fekete, S.P., Gour, A., Hesterberg, A., Keldenich, P., Scheffer, C.: Three colors suffice: Conflict-free coloring of planar graphs. In: Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1951–1963. (2017) 3. Alon, N., Smorodinsky, S.: Conflict-free colorings of shallow discs. In: Proceedings of the 22nd ACM Symposium on Computational Geometry (SoCG), pp. 41–43. (2006) 4. Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z.: Ranking of graphs. In: Proceedings of the 20th Workshop. Graph Theory Concepts Computer Science (WG), pp. 292–304. (1994) 5. Chen, K., Fiat, A., Kaplan, H., Levy, M., Matoušek, J., Mossel, E., Pach, J., Sharir, M., Smorodinsky, S., Wagnerand, U., Welzl, E.: Online conflict-free coloring for intervals. SIAM J. Comput. 36, 1342–1359 (2007)
|
|