Abstract
AbstractIn this paper, we study games with continuous action spaces and non-linear payoff functions. Our key insight is that Lipschitz continuity of the payoff function allows us to provide algorithms for finding approximate equilibria in these games. We begin by studying Lipschitz games, which encompass, for example, all concave games with Lipschitz continuous payoff functions. We provide an efficient algorithm for computing approximate equilibria in these games. Then we turn our attention to penalty games, which encompass biased games and games in which players take risk into account. Here we show that if the penalty function is Lipschitz continuous, then we can provide a quasi-polynomial time approximation scheme. Finally, we study distance biased games, where we present simple strongly polynomial time algorithms for finding best responses in $$L_1$$
L
1
and $$L_2^2$$
L
2
2
biased games, and then use these algorithms to provide strongly polynomial algorithms that find 2/3 and 5/7 approximate equilibria for these norms, respectively.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献